Zewail City of Science and Technology

Wavelength Separation on Dielectric Interface Based on Angular and Lateral Displacement

Introduction

- When Gaussian light beam is incident on a dielectric interface, it shifts from geometric optics predications. These shifts with planar or corrugated interfaces are known as non specular shifts which have been investigated by many researchers from the beginning of the last century till now [1]. Further, many applications based on these shifts have very interesting practical implementations [2].
- In this work, the Gaussian light beam wavelengths separation with planar or corrugated interfaces is studied using beam propagation method (BPM). It is found that the displacement for the reflected beams at planar interface is larger than the displacement at the transmitted beams. However, the separation in the transmitted beams in corrugated interface is larger than the reflected fields. Therefore, the suggested technique can separate the two wavelengths in different optical paths successfully. Additionally, the obtained results are in good agreement with the theoretical predictions and significant improvement over the previously published results [3-6].

Design and Simulations

- The fast Fourier transform based beam propagation method (FFTBPM) is used to simulate the proposed device [7].
- The input parameters are chosen as: $n_{2}=1.94$ and surrounded by air (Fused Quartz-air interface).
- The lunching beam wavelengths in free space are $\lambda_{1}=1.33 \mu \mathrm{~m}$ and $\lambda_{2}=1.55 \mu \mathrm{~m}$.

In planar interface case.

Fig. 2: The input field and output field spectrums containing the
two wavelengths 1.55 нm and $1.33 \mu \mathrm{~m}$.

- As shown in Fig. 2, the locations of the two wave vectors are located at $k_{x i _1}=6.739$ $\mu \mathrm{m}^{-1}$ and at $k_{x i 2}=7.854 \mu \mathrm{~m}^{-1}$.
- The calculated values for the wave vectors are matched with input simulated spectrum.
- Figure 3 shows the total output field at the two wavelengths.
- The beam peak is separated into two peaks at different wavelengths. This separation increases as the propagation distance increases.
- The separation for the reflected beams is greater than the separation of the transmitted ones.
- The separated beams can be guided into different paths (like optical fiber or other

[^0]
In corrugated interface case.

- The corrugation is square wave pitch, each pitch depth is $30 \mu \mathrm{~m}$ and pitch depth is $60 \mu \mathrm{~m}$.
- Figure 4 reveals the total output field at the two wavelengths, as shown the Gaussian beam peaks are separated by a distance.
- The separation increased as the propagation distance is increased.
- The total transmitted and reflected fields can be controlled by adapting the corrugation pitch depth and width.

Fig.4: The total output field, show separation between two Gaussian beams at wavelengths $1.55 \mu \mathrm{~m}$ and $1.33 \mu \mathrm{~m}$ at corrugated interface.

- Figure 5 gives the output spectrum for the total field, The reflected spectrums are located at $\mathrm{k}_{\mathrm{xr} 1}=-6.735 \mu \mathrm{~m}^{-1}$ and at $k_{x r 2}=-7.864 \mu \mathrm{~m}^{-1}$.
- The transmitted spectrum is located at $\mathrm{k}_{\mathrm{xt} 1}=-6.735 \mu \mathrm{~m}^{-1}$ and at $k_{\mathrm{xt} 2}=-7.822$ $\mu \mathrm{m}^{-1}$.

Conclusion

This analysis describes the wavelength separation of the Gaussian light beam based on the non specular shifts from the dielectric interfaces. The discussion at different interfaces (planar and corrugated dielectric interfaces) between two homogenous media is presented. The BPM results are matched well with the theory of the nonspecular phenomena of the electromagnetic field interaction on a dielectric interface. It is found that the displacement for the reflected beams at planar interface is larger than the displacement at the transmitted beams. However, in corrugated interface, the separation in the transmitted beams is larger than the reflected fields. Hence it can separate the two wavelengths and each one can be guided to its own path like optical fiber.

References

1. W. Nasalski, "Three-dimensional beam reflection at dielectric interfaces", Opt. Comm. Vol. 197, iss. 4-6 (2001).
2. Wang X., Yin C., and Cao Z. " In Progress in Planar Optical Waveguides ", Springer Berlin Heidelberg.
3. F. FALCO, T. TAMIR, L., K. MING, "Anomalous spatial modifications of beams diffracted by twodimensional periodic media", J. Opt. Soc. Am. A, Vol. 24, iss.6,pp.1666(2007).
4. Civitci F., M. Hammer, and H. J. W. M. Hoekstra. "Planar prism spectrometer based on adiabatically connected waveguiding slabs." Optics Communications 365 (2016).
5. L. R. Gomaa, G. H. Chartier, and A. S. Samra. "A novel technique for making grating demultiplexers in integrated optics." Journal of Physics D: Applied Physics 23.10 (1990).
6. L. R. Gomaa, "Analysis of propagating Gaussian light beam incident at critical angle on a dielectric interface by the BPM". Bulletin of the faculty of eng. Assiut Unv. , vol. 28 iss. 2 pp-73 (2000).
7. K. Okamoto, "Fundamentals of Optical Waveguides", Elsevier Inc., (2006).

[^0]: Fig. 3: The total output field, show separation between two Gaussian beams at Fig. .3: The total output tield, show separation between
 wavelengths $1.55 \mu \mathrm{~m}$ and 1.33 mm at planar interface.

